1.

Solution to Math4230 Tutorial 2

(a) Let C be a nonempty subset of R", and let A\; and Ao be positive scalars. Show that if C' is
convex, then (A1 + A2)C = A1 C + A\2C'. Show by example that this need not be true when C' is not
convex.

(b) Show that the intersection N;c;C; of a collection {C; | i € I'} of cones is a cone.

(c) Show that the image and the inverse image of a cone under a linear transformation is a cone.
(d) Show that the vector sum C; + C5 of two cones Cy and C5 is a cone.

(e) Show that a subset C' is a convex cone if and only if it is closed under addition and positive
scalar multiplication, i.e., C 4+ C C C, and vC C C for all v > 0.

Solution.

(a) We always have (A +A2)C C A C + X\2C, even if C is not convex. To show the reverse inclusion
assuming C' is convex, note that a vector x in A{C + AoC' is of the form x = Ajx1 + A9xo, where
x1,x2 € C. By convexity of C, we have

A1 A2

C
VRS WIS Vet

and it follows that
T = MNT1+ Aoxg € ()\1 + )\2)0,

so \MC + X\C C (/\1 + )\Q)C.

For a counterexample when C' is not convex, let C' be a set in R™ consisting of two vectors, 0
and = # 0, and let A\; = Ay = 1. Then C is not convex, and (A; + A2)C' = 2C = {0, 2z}, while
AMC + XC =C+ C ={0,z,2x}, showing that (A; + A2)C # M\ C + \oC.

(b) Let x € NierC; and let a be a positive scalar. Since x € C; for all i € I and each C; is
a cone, the vector ax belongs to C; for all ¢ € I. Hence, ax € N;c;C;, showing that N;c7C; is a cone.

(c) First we prove that A-C' is a cone, where A is a linear transformation and A-C is the image
of C' under A. Let z € A-C and let a be a positive scalar. Then, Az = z for some z € C, and
since C is a cone, ax € C. Because A(ax) = az, the vector az is in A - C, showing that A-C'is a
cone.

Next we prove that the inverse image A~ - C of C under A is a cone. Let 2 € A™!-C and let o
be a positive scalar. Then Az € C, and since C' is a cone, Az € C. Thus, the vector A(azx) € C,
implying that ax € A~! - C, and showing that A~! - C is a cone.

(d) Let z € C1 + Co and let « be a positive scalar. Then, x = x; + x9 for some z; € C7 and
9 € (5, and since C7 and Cy are cones, axq € Cq and axos € Cy. Hence, ax = ari+axs € C1+Cs,



showing that C + Cs is a cone.

(e) Let C be a convex cone. Then vC' C C, for all v > 0, by the definition of cone. Furthermore,
by convexity of C, for all z,y € C, we have z € C, where

1
z= §(ac+y).

Hence (z 4+ y) = 2z € C, since C is a cone, and it follows that C + C C C.

Conversely, assume that C'+ C C C, and vC C C. Then C is a cone. Furthermore, if z,y € C
and a € (0,1), we have ax € C and (1 — o)y € C, and ar + (1 — a)y € C (since C + C C C).
Hence C is convex.

. Let C' be a nonempty convex subset of R™. Let also f = (f1,...,fm), where f; : C — R,
i=1,...,m, are convex functions, and let g : R™ +— R be a function that is convex and monoton-
ically nondecreasing over a convex set that contains the set {f(z) | = € C}, in the sense that for
all uy,ug in this set such that u; < wug, we have g(u;) < g(uz). Show that the function h defined
by h(z) = g(f(x)) is convex over C. If in addition, m = 1, g is monotonically increasing and f is
strictly convex, then h is strictly convex.

Solution.
Let z,y € R™ and let « € [0,1]. By the definitions of h and f, we have

h(az + (1 — a)y) = g(f(az + (1 — a)y))
=g(filaz + (1 —a)y),..., fm(az + (1 - a)y))
<glafix) + (1 —a)fi(), ., afm(@) + (1 —a)fm(y))
=g(a(fi(@),..., fm(@)) + (1 = ) (f1(y),---, fm(y)))
<ag(fi(x),..., fm(@)) + (1 = a)g(f1(¥),- -, fm(y))
=ag(f(z)) + (1 —a)g(f(y))
= ah(z) + (1 - a)h(y) (1)

where the first inequality follows by convexity of each f; and monotonicity of g, while the second
inequality follows by convexity of g.

If m = 1, g is monotonically increasing, and f is strictly convex, then the first inequality is
strict whenever x # y and « € (0, 1), showing that & is strictly convex.



3. Show that the following functions from R" to (—oo, 0o are convex:
(a) fa) =Ine™ + - 7o),
(b) fa(x) = [|lz||P with p > 1.
(c) f3(z) = ePr'AT where A is a positive semidefinite symmetric n x n matrix and 3 is a positive
scalar.

(d) fa(z) = f(Az +b), where f: R™ — R is a convex function, A is an m x n matrix, and b is a
vector in R™.

Solution.

(a) We show that the Hessian of f is positive semidefinite at all x € R". Let (z) = €™ + - -+ ¢"".
Then a straightforward calculation yields

1 n n
V2 fi(z (7 Z Z @i+25) (2 — ;)2 > 0, VzeR"™

Hence by the previous problem, f; is convex.

(b) The function fa(z) = ||z||” can be viewed as a composition g(f(x)) of the scalar function
g(t) = t? with p > 1 and the function f(x) = ||z||. In this case, g is convex and monotonically
increasing over the nonnegative axis, the set of values that f can take, while f is convex over R"
(since any vector norm is convex). From problem 2, it follows that the function fo(x) = ||z||P is
convex over R".

(¢) The function f3(z) = eX'4% can be viewed as a composition g(f(z)) of the function g(t) = et
for t € R and the function f(x) = 2/ Az for z € R™. In this case, g is convex and monotonically
increasing over R, while f is convex over R" (since A is positive semidefinite). From problem 2, it
follows that f3 is convex over R"™.

(d) This part is straightforward using the definition of a convex function.

4. Let C' be a nonempty convex subset of R". Show that:
cone(C) = Ugec{yz|y > 0}.
Solution

Let y € cone(C). If y =0, then y € Ugec{yx | v > 0} and we are done. If y # 0,
then by definition of cone(C), we have

Y= i AiTi,
=1

for some positive integer m, nonnegative scalars \;, and vectors x; € C. Since
y # 0, we cannot have all \; equal to zero, implying that Z:’;l Ai > 0. Because
x; € C for all 7 and C is convex, the vector

belongs to C. For this vector, we have

(%)

with 2211 Ai > 0, implying that y € Uzec{’yw | v+ > 0} and showing that
cone(C) C Uzec{yz |y > 0}.

The reverse inclusion follows directly from the definition of cone(C).
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5. Let f : R™ — R be a differentiable function. We say that f is strongly
convex with coefficient « if

(Vf(z) = Vi) (@ —y) = alle -yl Ve, y € R,

where « is some positive scalar.

(a) Show that if f is strongly convex with coefficient a, then f is strictly
convex.

(b) Assume that f is twice continuously differentiable. Show that strongly
convexity of f with coefficient « is equivalent to the positive semi def-
initeness of V2f(x) — al for every € R"™, where I is the identity
matrix.

Solution

(a) Fix some z,y € R" such that z # y, and define the function h : ® — R by
h(t) = f(ert(y - x)) Consider scalars t and s such that ¢ < s. Using the chain
rule and the equation

(Vi@ - Viw) @-y) > alz =y,  VayeR, (1.8)
for some a > 0, we have

(242 40

= (Ve + sty —0) = V(o iy - 0)) - 0)s 1)

> a(s—t)?lz —y|* > 0.

Thus, dh/dt is strictly increasing and for any ¢ € (0, 1), we have

h(t) — h(0) _ l/t dh(r) , _ 1 /1 dh(r) . _ h(1) = h(t)

¢ y ar TS 1= ar T T

Equivalently, th(1) + (1 — t)h(0) > h(t). The definition of h yields ¢f(y) + (1 —
tHf(x) > f(ty + (1 - t)x) Since this inequality has been proved for arbitrary
t € (0,1) and x # y, we conclude that f is strictly convex.

(b) Suppose now that f is twice continuously differentiable and Eq. (1.8) holds.
Let ¢ be a scalar. We use Prop. 1.1.13(b) twice to obtain

2
fa+ey) = f(@) + ey V(@) + SV (@ + tey)y,

and
2
J(@) = fa+ey) = ey Vi@ +ey) + Sy'V2f(a+ sey)y,

for some t and s belonging to [0,1]. Adding these two equations and using Eq.
(1.8), we obtain

2

SV (V2 f (@ + sey) + V2 f (@ + tey) )y = (Vf (@ + ey) = V(@) (ey) = ac |y

We divide both sides by ¢? and then take the limit as ¢ — 0 to conclude that
y'V2f(2)y > ally||®>. Since this inequality is valid for every y € R", it follows
that V2 f(z) — al is positive semidefinite.

For the converse, assume that V2 f(z) — ol is positive semidefinite for all
x € R". Consider the function g : it — R defined by

/
g(t) =Vf(tx+ (1 —t)y) (z —y).
Using the Mean Value Theorem (Prop. 1.1.12), we have

(V@) = Vi) (= —y) = g(1) - g(0) = dz_(tt)



for some t € [0, 1]. On the other hand,

dg(t

WO (o )9 (1 + (1~ ) & ) > alle — I
where the last inequality holds because V2 f (tm—l—(l —t)y) —ad is positive semidef-
inite. Combining the last two relations, it follows that f is strongly convex with
coefficient a.



